Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22.113
Filtrar
1.
Stem Cell Res Ther ; 15(1): 98, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38581019

RESUMO

BACKGROUND: In vitro chondrogenesis of mesenchymal stromal cells (MSCs) driven by the essential chondro-inducer transforming growth factor (TGF)-ß is instable and yields undesired hypertrophic cartilage predisposed to bone formation in vivo. TGF-ß can non-canonically activate bone morphogenetic protein-associated ALK1/2/3 receptors. These have been accused of driving hypertrophic MSC misdifferentiation, but data remained conflicting. We here tested the antihypertrophic capacity of two highly specific ALK1/2/3 inhibitors - compound A (CompA) and LDN-212854 (LDN21) - in order to reveal potential prohypertrophic contributions of these BMP/non-canonical TGF-ß receptors during MSC in vitro chondrogenesis. METHODS: Standard chondrogenic pellet cultures of human bone marrow-derived MSCs were treated with TGF-ß and CompA (500 nM) or LDN21 (500 nM). Daily 6-hour pulses of parathyroid hormone-related peptide (PTHrP[1-34], 2.5 nM, from day 7) served as potent antihypertrophic control treatment. Day 28 samples were subcutaneously implanted into immunodeficient mice. RESULTS: All groups underwent strong chondrogenesis, but GAG/DNA deposition and ACAN expression were slightly but significantly reduced by ALK inhibition compared to solvent controls along with a mild decrease of the hypertrophy markers IHH-, SPP1-mRNA, and Alkaline phosphatase (ALP) activity. When corrected for the degree of chondrogenesis (COL2A1 expression), only pulsed PTHrP but not ALK1/2/3 inhibition qualified as antihypertrophic treatment. In vivo, all subcutaneous cartilaginous implants mineralized within 8 weeks, but PTHrP pretreated samples formed less bone and attracted significantly less haematopoietic marrow than ALK1/2/3 inhibitor groups. CONCLUSIONS: Overall, our data show that BMP-ALK1/2/3 inhibition cannot program mesenchymal stromal cells toward stable chondrogenesis. BMP-ALK1/2/3 signalling is no driver of hypertrophic MSC misdifferentiation and BMP receptor induction is not an adverse prohypertrophic side effect of TGF-ß that leads to endochondral MSC misdifferentiation. Instead, the prohypertrophic network comprises misregulated PTHrP/hedgehog signalling and WNT activity, and a potential contribution of TGF-ß-ALK4/5-mediated SMAD1/5/9 signalling should be further investigated to decide about its postulated prohypertrophic activity. This will help to successfully engineer cartilage replacement tissues from MSCs in vitro and translate these into clinical cartilage regenerative therapies.


Assuntos
Células-Tronco Mesenquimais , Proteína Relacionada ao Hormônio Paratireóideo , Animais , Humanos , Camundongos , Células Cultivadas , Condrócitos/metabolismo , Condrogênese , Proteínas Hedgehog/genética , Hipertrofia/metabolismo , Células-Tronco Mesenquimais/metabolismo , Proteína Relacionada ao Hormônio Paratireóideo/farmacologia , Fator de Crescimento Transformador beta/metabolismo
2.
Stem Cell Res Ther ; 15(1): 97, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38581065

RESUMO

BACKGROUND: DNA damage and oxidative stress induced by chemotherapy are important factors in the onset of premature ovarian insufficiency (POI). Studies have shown that mitochondria derived from mesenchymal stem cells (MSC-Mito) are beneficial for age-related diseases, but their efficacy alone is limited. Pyrroloquinoline quinone (PQQ) is a potent antioxidant with significant antiaging and fertility enhancement effects. This study aimed to investigate the therapeutic effect of MSC-Mito in combination with PQQ on POI and the underlying mechanisms involved. METHODS: A POI animal model was established in C57BL/6J mice by cyclophosphamide and busulfan. The effects of MSC-Mito and PQQ administration on the estrous cycle, ovarian pathological damage, sex hormone secretion, and oxidative stress in mice were evaluated using methods such as vaginal smears and ELISAs. Western blotting and immunohistochemistry were used to assess the expression of SIRT1, PGC-1α, and ATM/p53 pathway proteins in ovarian tissues. A cell model was constructed using KGN cells treated with phosphoramide mustard to investigate DNA damage and apoptosis through comet assays and flow cytometry. SIRT1 siRNA was transfected into KGN cells to further explore the role of the SIRT1/ATM/p53 pathway in combination therapy with MSC-Mito and PQQ for POI. RESULTS: The combined treatment of MSC-Mito and PQQ significantly restored ovarian function and antioxidant capacity in mice with POI. This treatment also reduced the loss of follicles at various stages, improving the disrupted estrous cycle. In vitro experiments demonstrated that PQQ facilitated the proliferation of MitoTracker-labelled MSC-Mito, synergistically restoring mitochondrial function and inhibiting oxidative stress in combination with MSC-Mito. Both in vivo and in vitro, the combination of MSC-Mito and PQQ increased mitochondrial biogenesis mediated by SIRT1 and PGC-1α while inhibiting the activation of ATM and p53, consequently reducing DNA damage-mediated cell apoptosis. Furthermore, pretreatment of KGN cells with SIRT1 siRNA reversed nearly all the aforementioned changes induced by the combined treatment. CONCLUSIONS: Our research findings indicate that PQQ facilitates MSC-Mito proliferation and, in combination with MSC-Mito, ameliorates chemotherapy-induced POI through the SIRT1/ATM/p53 signaling pathway.


Assuntos
Células-Tronco Mesenquimais , Insuficiência Ovariana Primária , Animais , Feminino , Humanos , Camundongos , Antioxidantes/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Células-Tronco Mesenquimais/metabolismo , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Cofator PQQ/farmacologia , Insuficiência Ovariana Primária/patologia , RNA Interferente Pequeno/metabolismo , Sirtuína 1/genética , Sirtuína 1/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
3.
Int J Nanomedicine ; 19: 3475-3495, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38623080

RESUMO

Purpose: Human umbilical cord mesenchymal stem cell (hucMSC)-derived small extracellular vesicles (sEVs) are natural nanocarriers with promising potential in treating liver fibrosis and have widespread applications in the fields of nanomedicine and regenerative medicine. However, the therapeutic efficacy of natural hucMSC-sEVs is currently limited owing to their non-specific distribution in vivo and partial removal by mononuclear macrophages following systemic delivery. Thus, the therapeutic efficacy can be improved through the development of engineered hucMSC-sEVs capable to overcome these limitations. Patients and Methods: To improve the anti-liver fibrosis efficacy of hucMSC-sEVs, we genetically engineered hucMSC-sEVs to overexpress the anti-fibrotic gene bone morphogenic protein 7 (BMP7) in parental cells. This was achieved using lentiviral transfection, following which BMP7-loaded hucMSC-sEVs were isolated through ultracentrifugation. First, the liver fibrosis was induced in C57BL/6J mice by intraperitoneal injection of 50% carbon tetrachloride (CCL4) twice a week for 8 weeks. These mice were subsequently treated with BMP7+sEVs via tail vein injection, and the anti-liver fibrosis effect of BMP7+sEVs was validated using small animal in vivo imaging, immunohistochemistry (IHC), tissue immunofluorescence, and enzyme-linked immunosorbent assay (ELISA). Finally, cell function studies were performed to confirm the in vivo results. Results: Liver imaging and liver histopathology confirmed that the engineered hucMSC-sEVs could reach the liver of mice and aggregate around activated hepatic stellate cells (aHSCs) with a significantly stronger anti-liver fibrosis effect of BMP7-loaded hucMSC-sEVs compared to those of blank or negative control-transfected hucMSC-sEVs. In vitro, BMP7-loaded hucMSC-sEVs promoted the phenotypic reversal of aHSCs and inhibited their proliferation to enhance the anti-fibrotic effects. Conclusion: These engineered BMP7-loaded hucMSC-sEVs offer a novel and promising strategy for the clinical treatment of liver fibrosis.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , Animais , Camundongos , Humanos , Células Estreladas do Fígado/patologia , Camundongos Endogâmicos C57BL , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/terapia , Cirrose Hepática/metabolismo , Fibrose , Vesículas Extracelulares/patologia , Células-Tronco Mesenquimais/metabolismo , Cordão Umbilical , Proteína Morfogenética Óssea 7/genética , Proteína Morfogenética Óssea 7/metabolismo
4.
Mol Biol Rep ; 51(1): 522, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627337

RESUMO

BACKGROUND: Multiple sclerosis (MS) is a complex autoimmune disease that affects the central nervous system, causing inflammation, demyelination, and neurodegeneration. Understanding the dysregulation of Tregs, dynamic cells involved in autoimmunity, is crucial in comprehending diseases like MS. However, the role of lymphocyte-activation gene 3 (Lag-3) in MS remains unclear. METHODS: In this study, we explore the potential of exosomes derived from human umbilical cord mesenchymal stem cells (hUMSCs-Exs) as an immune modulator in experimental autoimmune encephalomyelitis (EAE), a model for MS. RESULTS: Using flow cytometry, our research findings indicate that groups receiving treatment with hUMSC-Exs revealed a significant increase in Lag-3 expression on Foxp3 + CD4 + T cells. Furthermore, cell proliferation conducted on spleen tissue samples from EAE mice using the CFSE method exposed to hUMSC-Exs yielded relevant results. CONCLUSIONS: These results suggest that hUMSCs-Exs could be a promising anti-inflammatory agent to regulate T-cell responses in EAE and other autoimmune diseases. However, further research is necessary to fully understand the underlying mechanisms and Lag-3's precise role in these conditions.


Assuntos
Encefalomielite Autoimune Experimental , Exossomos , Células-Tronco Mesenquimais , Esclerose Múltipla , Humanos , Camundongos , Animais , Camundongos Endogâmicos C57BL , Células-Tronco Mesenquimais/metabolismo , Cordão Umbilical
5.
Sci Rep ; 14(1): 8404, 2024 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600158

RESUMO

The survival of leukemic cells is significantly influenced by the bone marrow microenvironment, where stromal cells play a crucial role. While there has been substantial progress in understanding the mechanisms and pathways involved in this crosstalk, limited data exist regarding the impact of leukemic cells on bone marrow stromal cells and their potential role in drug resistance. In this study, we identify that leukemic cells prime bone marrow stromal cells towards osteoblast lineage and promote drug resistance. This biased differentiation of stroma is accompanied by dysregulation of the canonical Wnt signaling pathway. Inhibition of Wnt signaling in stroma reversed the drug resistance in leukemic cells, which was further validated in leukemic mice models. This study evaluates the critical role of leukemic cells in establishing a drug-resistant niche by influencing the bone marrow stromal cells. Additionally, it highlights the potential of targeting Wnt signaling in the stroma by repurposing an anthelmintic drug to overcome the microenvironment-mediated drug resistance.


Assuntos
Leucemia Mieloide Aguda , Células-Tronco Mesenquimais , Animais , Camundongos , Via de Sinalização Wnt , Leucemia Mieloide Aguda/metabolismo , Medula Óssea/metabolismo , Células Estromais/metabolismo , Células-Tronco Mesenquimais/metabolismo , Resistência a Medicamentos , Células da Medula Óssea , Microambiente Tumoral/fisiologia
6.
Physiol Rep ; 12(7): e15991, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38605421

RESUMO

Skeletal muscle mass is critical for activities of daily living. Resistance training maintains or increases muscle mass, and various strategies maximize the training adaptation. Mesenchymal stem cells (MSCs) are multipotent cells with differential potency in skeletal muscle cells and the capacity to secrete growth factors. However, little is known regarding the effect of intramuscular injection of MSCs on basal muscle protein synthesis and catabolic systems after resistance training. Here, we measured changes in basal muscle protein synthesis, the ubiquitin-proteasome system, and autophagy-lysosome system-related factors after bouts of resistance exercise by intramuscular injection of MSCs. Mice performed three bouts of resistance exercise (each consisting of 50 maximal isometric contractions elicited by electrical stimulation) on the right gastrocnemius muscle every 48 h, and immediately after the first bout, mice were intramuscularly injected with either MSCs (2.0 × 106 cells) labeled with green fluorescence protein (GFP) or vehicle only placebo. Seventy-two hours after the third exercise bout, GFP was detected only in the muscle injected with MSCs with concomitant elevation of muscle protein synthesis. The injection of MSCs also increased protein ubiquitination. These results suggest that the intramuscular injection of MSCs augmented muscle protein turnover at the basal state after consecutive resistance exercise.


Assuntos
Células-Tronco Mesenquimais , Treinamento de Força , Humanos , Masculino , Camundongos , Animais , Injeções Intramusculares , Proteínas Musculares/metabolismo , Atividades Cotidianas , Músculo Esquelético/metabolismo , Células-Tronco Mesenquimais/metabolismo
7.
Curr Protoc ; 4(4): e1032, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38606955

RESUMO

The therapeutic potential of mesenchymal stromal cells (MSCs) has been extensively investigated in both preclinical and clinical settings. Recent years have witnessed the emergence of numerous isolation protocols and culture techniques, ranging from the selection of subpopulations to preserve stemness to preconditioning strategies aimed at enhancing therapeutic efficacy, tailored to the specific tissue source. In this protocol, we present a straightforward and cost-effective method for isolating human MSCs (hMSCs) from discarded bone marrow collection kits (comprising bag and filter systems) originally intended for removing impurities and unwanted cellular debris from the collected bone marrow aspirate, ensuring the purity of the stem cell population during stem cell transplantation. Utilizing basic laboratory equipment, we demonstrate the isolation of hMSCs, highlighting the expression of specific surface antigens, and multilineage differentiation into adipogenic, osteogenic, and chondrogenic lineages in vitro. This sustainable and resource-efficient approach not only contributes to reducing medical waste but also holds promise for advancing regenerative medicine applications. © 2024 Wiley Periodicals LLC. Basic Protocol 1: Isolation of human mesenchymal stromal cells from bone marrow collection kits Basic Protocol 2: Culture of human mesenchymal stromal cells Basic Protocol 3: Characterization of human mesenchymal stromal cells with flow cytometry analysis Basic Protocol 4: Characterization of human mesenchymal stromal cells with multilineage differentiation under in vitro conditions.


Assuntos
Medula Óssea , Células-Tronco Mesenquimais , Humanos , Células-Tronco Mesenquimais/metabolismo , Diferenciação Celular , Adipogenia , Citometria de Fluxo
8.
Cells ; 13(7)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38607056

RESUMO

Glioblastoma is the most aggressive, malignant, and lethal brain tumor of the central nervous system. Its poor prognosis lies in its inefficient response to currently available treatments that consist of surgical resection, radiotherapy, and chemotherapy. Recently, the use of mesenchymal stem cells (MSCs) as a possible kind of cell therapy against glioblastoma is gaining great interest due to their immunomodulatory properties, tumor tropism, and differentiation into other cell types. However, MSCs seem to present both antitumor and pro-tumor properties depending on the tissue from which they come. In this work, the possibility of using MSCs to deliver therapeutic genes, oncolytic viruses, and miRNA is presented, as well as strategies that can improve their therapeutic efficacy against glioblastoma, such as CAR-T cells, nanoparticles, and exosomes.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Humanos , Glioblastoma/metabolismo , Glioma/metabolismo , Neoplasias Encefálicas/metabolismo , Células-Tronco Mesenquimais/metabolismo
9.
Cells ; 13(7)2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38607062

RESUMO

Limbal epithelial progenitor cells (LEPC) rely on their niche environment for proper functionality and self-renewal. While extracellular vesicles (EV), specifically small EVs (sEV), have been proposed to support LEPC homeostasis, data on sEV derived from limbal niche cells like limbal mesenchymal stromal cells (LMSC) remain limited, and there are no studies on sEVs from limbal melanocytes (LM). In this study, we isolated sEV from conditioned media of LMSC and LM using a combination of tangential flow filtration and size exclusion chromatography and characterized them by nanoparticle tracking analysis, transmission electron microscopy, Western blot, multiplex bead arrays, and quantitative mass spectrometry. The internalization of sEV by LEPC was studied using flow cytometry and confocal microscopy. The isolated sEVs exhibited typical EV characteristics, including cell-specific markers such as CD90 for LMSC-sEV and Melan-A for LM-sEV. Bioinformatics analysis of the proteomic data suggested a significant role of sEVs in extracellular matrix deposition, with LMSC-derived sEV containing proteins involved in collagen remodeling and cell matrix adhesion, whereas LM-sEV proteins were implicated in other cellular bioprocesses such as cellular pigmentation and development. Moreover, fluorescently labeled LMSC-sEV and LM-sEV were taken up by LEPC and localized to their perinuclear compartment. These findings provide valuable insights into the complex role of sEV from niche cells in regulating the human limbal stem cell niche.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , Humanos , Proteômica/métodos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco , Melanócitos , Vesículas Extracelulares/metabolismo
10.
Front Immunol ; 15: 1385691, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38605955

RESUMO

Mesenchymal stem/stromal cells (MSCs) are being increasingly used in cell-based therapies due to their broad anti-inflammatory and immunomodulatory properties. Intravascularly-administered MSCs do not efficiently migrate to sites of inflammation/immunopathology, but this shortfall has been overcome by cell surface enzymatic fucosylation to engender expression of the potent E-selectin ligand HCELL. In applications of cell-based therapies, cryopreservation enables stability in both storage and transport of the produced cells from the manufacturing facility to the point of care. However, it has been reported that cryopreservation and thawing dampens their immunomodulatory/anti-inflammatory activity even after a reactivation/reconditioning step. To address this issue, we employed a variety of methods to cryopreserve and thaw fucosylated human MSCs derived from either bone marrow or adipose tissue sources. We then evaluated their immunosuppressive properties, cell viability, morphology, proliferation kinetics, immunophenotype, senescence, and osteogenic and adipogenic differentiation. Our studies provide new insights into the immunobiology of cryopreserved and thawed MSCs and offer a readily applicable approach to optimize the use of fucosylated human allogeneic MSCs as immunomodulatory/anti-inflammatory therapeutics.


Assuntos
Imunomodulação , Células-Tronco Mesenquimais , Humanos , Glicosilação , Células-Tronco Mesenquimais/metabolismo , Criopreservação/métodos , Anti-Inflamatórios/metabolismo
11.
FASEB J ; 38(7): e23600, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38572599

RESUMO

Odontoblast differentiation depends on the orderly recruitment of transcriptional factors (TFs) in the transcriptional regulatory network. The depletion of crucial TFs disturbs dynamic alteration of the chromatin landscape and gene expression profile, leading to developmental defects. Our previous studies have revealed that the basic leucine zipper (bZIP) TF family is crucial in odontoblastic differentiation, but the function of bZIP TF family member XBP1 is still unknown. Here, we showed the stage-specific expression patterns of the spliced form Xbp1s during tooth development. Elevated Xbp1 expression and nuclear translocation of XBP1S in mesenchymal stem cells (MSCs) were induced by differentiation medium in vitro. Diminution of Xbp1 expression impaired the odontogenic differentiation potential of MSCs. The further integration of ATAC-seq and RNA-seq identified Hspa9 as a direct downstream target, an essential mitochondrial chaperonin gene that modulated mitochondrial homeostasis. The amelioration of mitochondrial dysfunction rescued the impaired odontogenic differentiation potential of MSCs caused by the diminution of Xbp1. Furthermore, the overexpression of Hspa9 rescued Xbp1-deficient defects in odontoblastic differentiation. Our study illustrates the crucial role of Xbp1 in odontoblastic differentiation via modulating mitochondrial homeostasis and brings evidence to the therapy of mitochondrial diseases caused by genetic defects.


Assuntos
Proteínas da Matriz Extracelular , Células-Tronco Mesenquimais , Proteínas da Matriz Extracelular/metabolismo , Diferenciação Celular , Fatores de Transcrição/genética , Células-Tronco Mesenquimais/metabolismo , Homeostase
12.
FASEB J ; 38(7): e23599, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38572590

RESUMO

Diabetic nephropathy (DN) is the leading cause of end-stage renal disease globally. Currently, there are no effective drugs for the treatment of DN. Although several studies have reported the therapeutic potential of mesenchymal stem cells, the underlying mechanisms remain largely unknown. Here, we report that both human umbilical cord MSCs (UC-MSCs) and UC-MSC-derived exosomes (UC-MSC-exo) attenuate kidney damage, and inhibit epithelial-mesenchymal transition (EMT) and renal fibrosis in streptozotocin-induced DN rats. Strikingly, the Hedgehog receptor, smoothened (SMO), was significantly upregulated in the kidney tissues of DN patients and rats, and positively correlated with EMT and renal fibrosis. UC-MSC and UC-MSC-exo treatment resulted in decrease of SMO expression. In vitro co-culture experiments revealed that UC-MSC-exo reduced EMT of tubular epithelial cells through inhibiting Hedgehog/SMO pathway. Collectively, UC-MSCs inhibit EMT and renal fibrosis by delivering exosomes and targeting Hedgehog/SMO signaling, suggesting that UC-MSCs and their exosomes are novel anti-fibrotic therapeutics for treating DN.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Exossomos , Células-Tronco Mesenquimais , Humanos , Ratos , Animais , Nefropatias Diabéticas/metabolismo , Exossomos/metabolismo , Receptor Smoothened , Proteínas Hedgehog/metabolismo , Fibrose , Células-Tronco Mesenquimais/metabolismo , Cordão Umbilical/metabolismo , Diabetes Mellitus/metabolismo
13.
Hematol Oncol Stem Cell Ther ; 17(2): 120-129, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38560971

RESUMO

BACKGROUND AND OBJECTIVES: Bone marrow mesenchymal stromal cells (BM-MSCs) are key elements of the hematopoietic niche and participate in the regulatory mechanisms of hematopoietic stem cells (HSCs). Hematological diseases can affect MSCs and their functions. However, the dysregulations caused by sickle cell disease (SCD) are not fully elucidated. This work explored changes in BM-MSCs and their relationship with age using sickle cell mice (Townes-SS). MATERIALS AND METHODS: BM-MSCs were isolated from Townes-SS, and control groups 30- and 60-day-old Townes-AA and C57BL/6 J. RESULTS: The BM-MSCs showed no morphological differences in culture and demonstrated a murine MSC-like immunophenotypic profile (Sca-1+, CD29+, CD44+, CD90.2+, CD31-, CD45-, and CD117-). Subsequently, all BM-MSCs were able to differentiate into adipocytes and osteocytes in vitro. Finally, 30-day-old BM-MSCs of Townes-SS showed higher expression of genes related to the maintenance of HSCs (Cxcl12, Vegfa, and Angpt1) and lower expression of pro-inflammatory genes (Tnfa and Il-6). However, 60-day-old BM-MSCs of Townes-SS started to show expression of genes related to reduced HSC maintenance and increased expression of pro-inflammatory genes. CONCLUSION: These results indicates age as a modifying factor of gene expression of BM-MSCs in the context of SCD.


Assuntos
Anemia Falciforme , Células-Tronco Mesenquimais , Humanos , Animais , Camundongos , Medula Óssea , Camundongos Endogâmicos C57BL , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Mesenquimais/metabolismo , Células da Medula Óssea/metabolismo , Diferenciação Celular
14.
BMC Musculoskelet Disord ; 25(1): 253, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561728

RESUMO

BACKGROUND: The characteristics and therapeutic potential of subtypes of bone marrow mesenchymal stem cells (BMSCs) are largely unknown. Also, the application of subpopulations of BMSCs in cartilage regeneration remains poorly characterized. The aim of this study was to explore the regenerative capacity of CD146-positive subpopulations of BMSCs for repairing cartilage defects. METHODS: CD146-positive BMSCs (CD146 + BMSCs) were sorted by self-developed CD146-specific lipid magnetic spheres (CD146-LMS). Cell surface markers, viability, and proliferation were evaluated in vitro. CD146 + BMSCs were subjected to in vitro chondrogenic induction and evaluated for chondrogenic properties by detecting mRNA and protein expression. The role of the CD146 subpopulation of BMSCs in cartilage damage repair was assessed by injecting CD146 + BMSCs complexed with sodium alginate gel in the joints of a mouse cartilage defect model. RESULTS: The prepared CD146-LMS had an average particle size of 193.7 ± 5.24 nm, an average potential of 41.9 ± 6.21 mv, and a saturation magnetization intensity of 27.2 Am2/kg, which showed good stability and low cytotoxicity. The sorted CD146 + BMSCs highly expressed stem cell and pericyte markers with good cellular activity and cellular value-added capacity. Cartilage markers Sox9, Collagen II, and Aggrecan were expressed at both protein and mRNA levels in CD146 + BMSCs cells after chondrogenic induction in vitro. In a mouse cartilage injury model, CD146 + BMSCs showed better function in promoting the repair of articular cartilage injury. CONCLUSION: The prepared CD146-LMS was able to sort out CD146 + BMSCs efficiently, and the sorted subpopulation of CD146 + BMSCs had good chondrogenic differentiation potential, which could efficiently promote the repair of articular cartilage injury, suggesting that the sorted CD146 + BMSCs subpopulation is a promising seed cell for cartilage tissue engineering.


Assuntos
Cartilagem Articular , Células-Tronco Mesenquimais , Animais , Camundongos , Cartilagem Articular/metabolismo , Antígeno CD146/metabolismo , Diferenciação Celular , Células Cultivadas , Células-Tronco Mesenquimais/metabolismo , Células da Medula Óssea/metabolismo , Condrogênese , RNA Mensageiro/metabolismo , Fenômenos Magnéticos , Lipídeos
15.
Stem Cell Res Ther ; 15(1): 102, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589967

RESUMO

BACKGROUND: Premature ovarian insufficiency (POI) is a major cause of infertility. In this study, we aimed to investigate the effects of the combination of bone marrow mesenchymal stem cells (BMSCs) and moxibustion (BMSCs-MOX) on POI and evaluate the underlying mechanisms. METHODS: A POI rat model was established by injecting different doses of cyclophosphamide (Cy). The modeling of POI and the effects of the treatments were assessed by evaluating estrous cycle, serum hormone levels, ovarian weight, ovarian index, and ovarian histopathological analysis. The effects of moxibustion on BMSCs migration were evaluated by tracking DiR-labeled BMSCs and analyzing the expression of chemokines stromal cell-derived factor 1 (Sdf1) and chemokine receptor type 4 (Cxcr4). Mitochondrial function and mitophagy were assessed by measuring the levels of reactive oxygen species (ROS), mitochondrial membrane potential (MMP), ATP, and the mitophagy markers (Drp1, Pink1, and Parkin). Furthermore, the mitophagy inhibitor Mdivi-1 and the mitophagy activator CCCP were used to confirm the role of mitophagy in Cy-induced ovarian injury and the underlying mechanism of combination therapy. RESULTS: A suitable rat model of POI was established using Cy injection. Compared to moxibustion or BMSCs transplantation alone, BMSCs-MOX showed improved outcomes, such as reduced estrous cycle disorders, improved ovarian weight and index, normalized serum hormone levels, increased ovarian reserve, and reduced follicle atresia. Moxibustion enhanced Sdf1 and Cxcr4 expression, promoting BMSCs migration. BMSCs-MOX reduced ROS levels; upregulated MMP and ATP levels in ovarian granulosa cells (GCs); and downregulated Drp1, Pink1, and Parkin expression in ovarian tissues. Mdivi-1 significantly mitigated mitochondrial dysfunction in ovarian GCs and improved ovarian function. CCCP inhibited the ability of BMSCs-MOX treatment to regulate mitophagy and ameliorate Cy-induced ovarian injury. CONCLUSIONS: Moxibustion enhanced the migration and homing of BMSCs following transplantation and improves their ability to repair ovarian damage. The combination of BMSCs and moxibustion effectively reduced the excessive activation of mitophagy, which helped prevent mitochondrial damage, ultimately improving ovarian function. These findings provide a novel approach for the treatment of pathological ovarian aging and offer new insights into enhancing the efficacy of stem cell therapy for POI patients.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Moxibustão , Insuficiência Ovariana Primária , Humanos , Feminino , Ratos , Animais , Mitofagia , Espécies Reativas de Oxigênio/metabolismo , Carbonil Cianeto m-Clorofenil Hidrazona/efeitos adversos , Carbonil Cianeto m-Clorofenil Hidrazona/metabolismo , Insuficiência Ovariana Primária/induzido quimicamente , Insuficiência Ovariana Primária/terapia , Insuficiência Ovariana Primária/patologia , Ciclofosfamida/efeitos adversos , Células-Tronco Mesenquimais/metabolismo , Mitocôndrias/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Quinases/metabolismo , Hormônios/efeitos adversos , Hormônios/metabolismo , Trifosfato de Adenosina/metabolismo
16.
J Nanobiotechnology ; 22(1): 149, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38570846

RESUMO

BACKGROUND: Myocardial infarction (MI), a representative form of ischemic heart disease, remains a huge burden worldwide. This study aimed to explore whether extracellular vesicles (EVs) secreted from hyaluronic acid (HA)-primed induced mesenchymal stem cells (HA-iMSC-EVs) could enhance the cardiac repair after MI. RESULTS: HA-iMSC-EVs showed typical characteristics for EVs such as morphology, size, and marker proteins expression. Compared with iMSC-EVs, HA-iMSC-EVs showed enhanced tube formation and survival against oxidative stress in endothelial cells, while reduced reactive oxygen species (ROS) generation in cardiomyocytes. In THP-1 macrophages, both types of EVs markedly reduced the expression of pro-inflammatory signaling players, whereas HA-iMSC-EVs were more potent in augmenting anti-inflammatory markers. A significant decrease of inflammasome proteins was observed in HA-iMSC-EV-treated THP-1. Further, phospho-SMAD2 as well as fibrosis markers in TGF-ß1-stimulated cardiomyocytes were reduced in HA-iMSC-EVs treatment. Proteomic data showed that HA-iMSC-EVs were enriched with multiple pathways including immunity, extracellular matrix organization, angiogenesis, and cell cycle. The localization of HA-iMSC-EVs in myocardium was confirmed after delivery by either intravenous or intramyocardial route, with the latter increased intensity. Echocardiography revealed that intramyocardial HA-iMSC-EVs injections improved cardiac function and reduced adverse cardiac remodeling and necrotic size in MI heart. Histologically, MI hearts receiving HA-iMSC-EVs had increased capillary density and viable myocardium, while showed reduced fibrosis. CONCLUSIONS: Our results suggest that HA-iMSC-EVs improve cardiac function by augmenting vessel growth, while reducing ROS generation, inflammation, and fibrosis in MI heart.


Assuntos
Células-Tronco Mesenquimais , Infarto do Miocárdio , Humanos , Ácido Hialurônico/farmacologia , Células Endoteliais/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteômica , Infarto do Miocárdio/terapia , Infarto do Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Fibrose
17.
Stem Cell Res Ther ; 15(1): 96, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570892

RESUMO

BACKGROUND: Ovarian ageing is one of the major issues that impacts female fertility. Mesenchymal stem cell (MSC)-based therapy has made impressive progress in recent years. However, the efficacy and safety of MSCs, as nonautologous components, remain to be further verified. METHODS: Two common sources of MSCs, umbilical cord-derived MSCs (UC-MSCs) and adipose tissue-derived MSCs (AD-MSCs), were orthotopically transplanted into a mouse model of ovarian ageing to evaluate their therapeutic effects. The safety of the treatment was further evaluated, and RNA sequencing was performed to explore the underlying mechanisms involved. RESULTS: After orthotopic transplantation of MSCs into the ovary, the oestrous cycle, ovarian weight, number and proportion of primary follicles, granulosa cell proliferation, and angiogenesis were improved. The effects of AD-MSCs were superior to those of UC-MSCs in several indices, such as post-transplant granulosa cell proliferation, ovarian weight and angiogenesis. Moreover, the tumorigenesis, acute toxicity, immunogenicity and biodistribution of MSCs were evaluated, and both AD-MSCs and UC-MSCs were found to possess high safety profiles. Through RNA sequencing analysis, enhancement of the MAPK cascade was observed, and long-term effects were mainly linked to the activation of immune function. CONCLUSIONS: Orthotopic transplantation of MSCs displays significant efficacy and high safety for the treatment of ovarian ageing in mice.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Camundongos , Animais , Feminino , Ovário/metabolismo , Distribuição Tecidual , Proliferação de Células , Células-Tronco Mesenquimais/metabolismo , Modelos Animais de Doenças , Cordão Umbilical
18.
Pathol Res Pract ; 256: 155271, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38574630

RESUMO

BACKGROUND AND OBJECTIVE: The morbidity rate of non-small cell lung cancer (NSCLC) increases with age, highlighting that NSCLC is a serious threat to human health. The aim of this study was mainly to describe the role of exosomal miR-101-3p derived from bone marrow mesenchymal stem cells (BMSCs) in NSCLC. METHODS: A549 or NCI-H1703 cells (1×105/mouse) were injected into nude mice to establish an NSCLC animal model. RTqPCR, Western blotting and comet assays were used to assess the changes in gene expression, proteins and DNA damage repair. RESULTS: miR-101-3p and RAI2 were found to be expressed at low levels in NSCLC, while EZH2 was highly expressed. In terms of function, miR-101-3p downregulated EZH2. In addition, exosomal miR-101-3p derived from BMSCs promoted the expression of RAI2, inhibited DNA damage repair, and inhibited the activation of the PI3K/AKT/mTOR signaling pathway by inhibiting EZH2, thereby promoting autophagy and decreasing cell viability and finally enhancing the sensitivity of NSCLC to radiotherapy and inhibiting the malignant biological behavior of NSCLC. CONCLUSION: Exosomal miR-101-3p derived from BMSCs can inhibit DNA damage repair, promote autophagy, enhance the radiosensitivity of NSCLC, and inhibit the progression of NSCLC by inhibiting EZH2.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Exossomos , Neoplasias Pulmonares , Células-Tronco Mesenquimais , MicroRNAs , Humanos , Camundongos , Animais , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/patologia , MicroRNAs/metabolismo , Exossomos/genética , Exossomos/metabolismo , Camundongos Nus , Fosfatidilinositol 3-Quinases/metabolismo , Autofagia/genética , Células-Tronco Mesenquimais/metabolismo , Tolerância a Radiação , Dano ao DNA/genética , Proliferação de Células , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo
19.
Cell Death Dis ; 15(4): 271, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632264

RESUMO

Diabetes, a group of metabolic disorders, constitutes an important global health problem. Diabetes and its complications place a heavy financial strain on both patients and the global healthcare establishment. The lack of effective treatments contributes to this pessimistic situation and negative outlook. Exosomes released from mesenchymal stromal cells (MSCs) have emerged as the most likely new breakthrough and advancement in treating of diabetes and diabetes-associated complication due to its capacity of intercellular communication, modulating the local microenvironment, and regulating cellular processes. In the present review, we briefly outlined the properties of MSCs-derived exosomes, provided a thorough summary of their biological functions and potential uses in diabetes and its related complications.


Assuntos
Complicações do Diabetes , Diabetes Mellitus , Exossomos , Células-Tronco Mesenquimais , Humanos , Exossomos/metabolismo , Complicações do Diabetes/metabolismo , Comunicação Celular , Células-Tronco Mesenquimais/metabolismo , Resultado do Tratamento , Diabetes Mellitus/metabolismo
20.
J Extracell Vesicles ; 13(4): e12434, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38634538

RESUMO

Apoptosis releases numerous apoptotic vesicles that regulate processes such as cell proliferation, immunity, and tissue regeneration and repair. Now, it has also emerged as an attractive candidate for biotherapeutics. However, apoptotic vesicles encompass a diverse range of subtypes, and it remains unclear which specific subtypes play a pivotal role. In this study, we successfully isolated different apoptotic vesicle subtypes based on their sizes and characterized them using NTA and TEM techniques, respectively. We compared the functional variances among the distinct subtypes of apoptotic vesicles in terms of stem cell proliferation, migration, and differentiation, as well as for endothelial cell and macrophage function, effectively identifying subtypes that exhibit discernible functional differences. ApoSEV (with diameter <1000 nm) promoted stem cell proliferation, migration, and multi-potent differentiation, and accelerated skin wound healing of diabetes mouse model, while apoBD (with diameter >1000 nm) played the opposite effect on cell function and tissue regeneration. Lastly, employing protein analysis and gene sequencing techniques, we elucidated the intrinsic mechanisms underlying these differences between different subtypes of apoEVs. Collectively, this study identified that apoptotic vesicle subtypes possessed distinct bio-functions in regulating stem cell function and behaviour and modulating tissue regeneration, which primarily attribute to the distinct profiling of protein and mRNA in different subtypes. This comprehensive analysis of specific subtypes of apoEVs would provide novel insights for potential therapeutic applications in cell biology and tissue regeneration.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , Camundongos , Animais , Células-Tronco Mesenquimais/metabolismo , Cicatrização/fisiologia , Diferenciação Celular , Proliferação de Células
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...